The Scientific Data Exchange Reference Guide Includes implementation for x-ray tomography, x-ray fluorescence microscopy, and x-ray photon correlation http://www.aps.anl.gov/DataExchange **Version 0.0.13** April 10, 2012 Table 1: Version history | Versio | on Date | Notes | | | | | |--------|--------------|---|--|--|--|--| | v000 | Nov 15, 2011 | FdC: First version of the Data Exchange file format for full field x-ray imaging and tomography based on the definition from https://confluence.aps.anl.gov/. | | | | | | v001 | Dec 23, 2011 | FdC: Added sample and instrument class to meet APS (2-BM, 13-BM, 32-ID) and SLS (Tomcat) meta data requirements and definitions. | | | | | | v002 | Jan 5, 2012 | FdC: Merged with the Coherent X-ray Imaging Data Bank file format CXI from http://cxidb.org/cxi.html. Converted the document using the same diagram definition set by Filipe Maia in "CXI file format" and modified to fit the Data Exchange definitions. | | | | | | v003 | Jan 15, 2012 | NS: Added Provenance Class | | | | | | v004 | Feb 6, 2012 | FdC: Added measurement class and moved sample and instrument under it to meet ESRF request to allow for multiple tomography measurements to be stored in the same file (relevant for nano CT raster scans and similar). | | | | | | v005 | Feb 19, 2012 | FdC: Clean up 2FXi vs Data Exchange and moved to version control. | | | | | | v006 | Feb 21, 2012 | FdC/FM (SLS): explained more clearly that the 3D array dimension order (rotation, ccd y, ccd x) is a default but not mandatory. Affected sections 3.4, 6, 4.4.1, 6.2.1. | | | | | | v007 | Feb 22, 2012 | FdC/YP: added more info in the reconstruction and algorithm classes. Affected section 6.2.3 and table 36. | | | | | | v008 | Feb 25, 2012 | FdC: Expanded Data Exchange and Detector definition to add fluorescence, photon correlation. Affected section 2.2, 6, 8, 7, 6.1.1, 4.3.2.5, 7.1.1. | | | | | | v009 | Feb 26, 2012 | NS: Expanded Data Exchange and Detector definition for XPCS. Affected section 7, 7.1.1, 7.2.1. | | | | | Table 1: Version history | Version Date | | Notes | | | | | | |--------------|-------------|--|--|--|--|--|--| | v010 | Mar 1, 2012 | NS: Expanded Data Sample, Source, and Shutter definitions as well as Detector and other definitions for XPCS. Affected section 4.3.1, 4.3.2.2, 4.3.2.1, 7, 7.1.1, 7.2.1, 7.1.3 | | | | | | | v011 | Mar 2, 2012 | FdC: Split into technique specific the "instrument" definitions. Affected section 6.1, 7.1, 8.1 | | | | | | | v012 | Mar 5, 2012 | NS: Added sample thickness. Expanded XPCS definition. Affected section 4.3.1, 7.2.1 | | | | | | | v013 | Apr 5, 2012 | CS: Restructuring document into sections included into main document(s). Other edits. | | | | | | # **Contents** | 1 | Inti | roduction 1 1.0.0.1 T | |---|---------------------------------|--| | | | 1.0.0.2 T | | 2 | The 2.1 | Design of Data Exchange 2 HDF5 3 2.1.1 Data types 3 Data Exchange Definition 3 | | 3 | Dad | a Exchange by Example 5 | | | 3.1
3.2
3.3
3.4
3.5 | Diagram color code | | 4 | Dat | a Exchange Core Reference | | | 4.1 | Top level (root) | | | 4.2 | Exchange Group | | | | 4.2.1 3D array data attributes | | | 4.3 | Measurement | | | | 4.3.1 Sample | | | | 4.3.1.1 Geometry | | | | 4.3.1.1.1 Translation | | | | 4.3.1.1.2 Orientation | | | | 4.3.1.2 Experiment identifier 19 | | | | 4.3.1.3 Experimenter identifier 20 | | | | 4.3.2 Instrument | | | | 4.3.2.1 Source | | | | 4.3.2.2 Shutter | | | | 4.3.2.3 Attenuator | | | | 4.3.2.4 Monochromator | | | | 4.3.2.5 Detector | | | 4.4 | Provenance | | | | 4.4.1 | Process | 27 | |---|-----|--------|---|-----------| | | | 4.4.2 | Process description | 28 | | 5 | Cod | le Exa | mples | 29 | | | 5.1 | Creati | ing a minimal Data Exchange file | 29 | | 6 | Dat | a Exch | nange for X-ray Tomography | 30 | | | 6.1 | Instru | ment specific for x-ray tomography | 31 | | | | 6.1.1 | Detector | 31 | | | | 6.1.2 | ROI | 35 | | | | 6.1.3 | Objective | 36 | | | | 6.1.4 | Scintillator | 37 | | | | 6.1.5 | Setup | 38 | | | | 6.1.6 | Rotation Setup | 39 | | | | 6.1.7 | Acquisition | 40 | | | | 6.1.8 | Dark Setup | 41 | | | | 6.1.9 | White Setup | 42 | | | | 6.1.10 | Interferometer | 43 | | | 6.2 | APS 2 | -BM Process descriptions | 43 | | | | 6.2.1 | Sinogram | 44 | | | | 6.2.2 | Ring Removal | 45 | | | | 6.2.3 | Reconstruction | 46 | | | | 6.2.4 | Algorithm | 47 | | | | 6.2.5 | Gridftp | 49 | | | | 6.2.6 | Export | 50 | | | 6.3 | Creati | ing a minimal Data Exchange file for tomography | 50 | | | 6.4 | Creati | ing a typical Data Exchange file for tomography | 50 | | 7 | Dat | a Exch | nange for X-ray Photon Correlation | 51 | | | 7.1 | Instru | ment specific for x-ray photon correlation | 51 | | | | 7.1.1 | Detector | 51 | | | | 7.1.2 | Kinetics | 54 | | | | 7.1.3 | Setup | 55 | | | 7.2 | APS S | Sector 8 Process descriptions | 56 | | | | 7.2.1 | XPCS | 57 | | 8 | Dat | a Exch | nange for X-ray Fluorescence | 60 | | | 8.1 | | ment specific for x-ray fluorescence | 60 | | A | App | endix | | | | | | | | | | | | | | | 61 | |---|------------|-------|------------|-------|-----|------|-----|-----|------|-----|-----|-----|-----|--|--|--|--------| | | A.1 | Defau | lt units f | or D | ata | Exc | cha | ng | e ei | ntr | ies | | | | | |
61 | | | | A.1.1 | Angles | | | | | | | | | | | | | |
61 | | | | A.1.2 | Dates | | | | | | | | | | | | | |
61 | | | A.2 | Geome | etry | | | | | | | | | | | | | |
63 | | | | A.2.1 | Coordin | ate | Sys | tem | | | | | | | | | | |
63 | | | | A.2.2 | The loca | al co | ord | inat | e s | yst | em | of | ob | jed | ets | | | |
63 | #### Introduction 1 This document is a complete reference to the Data Exchange file format, including documented implementations for various beamline techniques. Briefly, Data Exchange is a set of guidelines for storing scientific data and metadata in a Hierarchical Data Format 5 (HDF5) file (http: //www.hdfgroup.org/HDF5). This reference guide describes the basic design principles, examples of their application, a core reference for guidelines common to most uses, and coding examples. The guide ends with a section devoted to each known implementation for a particular beamline technique. # 2 The Design of Data Exchange For various reasons, many x-ray techniques developed at synchrotron facilities around the world, are unable to directly compare results due to their inability to exchange data and software tools. The aim of Data Exchange is to define a simple file format offering few basic rules and allowing each community to extend and add technique specific components. The goal is to provide simplicity and extensibility in defining data, meta data and provenance information in a simple way that can be easily adopted by various x-ray techniques. The Data Exchange format is implemented using Hierarchical Data Format 5 (HDF5), which offers platform-independent binary data storage with optional compression, hierarchical data ordering, and self-describing tags so that one can examine a HDF5 file's contents with no knowledge of how the file writing program was coded. The aim and the scope of Data Exchange is very similar to the Coherent X-ray Imaging Data Bank file format (CXI), so whenever possible we will use the same conventions, name tags and reference system. This document is using the same diagram definition set by Filipe R. N. C. Maia in "CXI file format" (http://cxidb.org/cxi.html) and has been modified to fit the Data Exchange definitions. The core principle of Data Exchange is that it must be simple enough that it is not necessary to use a support library beyond core HDF5. The simplicity of Data Exchange read and write is achieved using basic HDF5 calls, making it easy for anyone to either look at an example file using h5dump or HDFView, or to look at example code in language X, and then create their own read and write routines in language Y. The simplest Data Exchange file provides information and exchange definition sufficient to share a multidimensional data array as simply as possible. In its simplest implementation Data Exchange implements only one "exchange" group. The "exchange" definition is designed to allow for simple exchange of images, spectra, and other forms of beamline detector data with a minimum of fields. This definition is essentially a technique-agnostic format for exchanging data with others. Data Exchange is also designed to be extended to include technique-specific data and metadata information. This is achieved by providing optional, but clearly defined, metadata components to the base definition. #### 2.1 HDF5 The HDF5 format is the basis of Data Exchange format. Data Exchange, like CXI, is not really a completely new file format but simply a set of rules designed to create HDF5 files with a common structure and to allow a uniform and consistent interpretation of such files. HDF5 was chosen as the basis because it is a widely used high performance scientific data format which many programs can already, at least partially, read and write. It also brings with it the almost automatic fulfillment of the Data Exchange requirements, i.e. simplicity, flexibility and extensibility. HDF5 version 1.8 or higher is required as previous versions don't support all features required by Data Exchange. ### 2.1.1 Data types Data Exchange uses the same CXI convention for data types as defined at
http://cxidb.org/cxi.html using HDF5 native datatypes. The data should be saved in the same format as it was created/acquired. For example CCD images acquired as 16 bit integers should be saved using the H5T_NATIVE_SHORT HDF5 type. In this way all cross platform biglittle endian issues reading and writing files are eliminated. ### 2.2 Data Exchange Definition While HDF5 gives great flexibility in data storage, straightforward file readability and exchange requires adhering to an agreed-upon naming and organizational convention. To achieve this goal, Data Exchange adopts a layered approach by defining a set of *mandatory* and <code>optional</code> fields. The general rules of a Data Exchange file is that must contain the following members: | lable 2. Data Exchange general rules | | | | | | | |--------------------------------------|-------------------|-----------------------------------|--|--|--|--| | Member | Туре | Example | | | | | | implements | string | "exchange:measurement:provenance" | | | | | | version | string | "1.0.1" | | | | | | exchange | Exchange group | | | | | | | measurement | Measurement group | | | | | | | provenance | Provenance group | | | | | | Table 2: Data Exchange general rules implements - A colon separated list in the root level of the HDF5 file that shows which components are present in the file. All groups listed in the *implements* string attribute are placed in the HDF5 file at the same level as *implements* and *version*. In a Data Exchange file the only mandatory implements is exchange. A more general Data Exchange file also contain measurement and provenance information, if so these will be declared in implements as "exchange: measurement: provenance" *version* - Located in the root level of the HDF5 file, identifies the Data Exchange version in use. exchange - Mandatory group containing one or more arrays that represent the most basic version of the data, such as raw or normalized optical density maps or a elemental signal map. $Exchange_N$ is used when more than one arrays or processing step are saved in the file. The exchange implementation for specific techniques is defined later (x-ray micro tomography in section 6, x-ray fluorescence in section 8). measurement – Optional group containing the measurement made on the sample. Measurement contains information about the sample and the instrument. Measurement N is used when more than one measurement is stored in the same file. provenance - Optional group containing information about the status of each processing step. In a Data Exchange file each data field has a unit defined using the units attribute. Units is not mandatory, if omitted the default unit as defined in Appendix A.1 is used. # 3 Data Exchange by Example ### 3.1 Diagram color code The diagrams of the Data Exchange file follow the same color conventions used by the CXI and reported in Figure 1 Figure 1: Explanation of the color code used in the diagrams ### 3.2 Data Exchange for Full Field X-ray Imaging The data file format for full field x-ray imaging (2FXi) is defined as the Data Exchange implementation to store all experimental data collected during full field x-ray imaging and tomography experiments as well as to capture infrastructure meta data and data provenance by recording how the data were acquired, processed and transferred. The 2FXi file format complies with the Data Exchange file format defined in Section 2.2, adding, as required by the Data Exchange definition, the technique-specific groups for full field x-ray imaging and tomography. The goal of Data Exchange implementation for x-ray full field imaging is to provide simplicity and extensibility in defining data, meta data and provenance information for x-ray imaging, micro and nano tomography. ### 3.3 A minimal Data Exchange file for Imaging Figures 2 shows a diagram a minimal Data Exchange file to store a single projection image. As no units are specified the data is assumed to be in "counts" with the axes (x, y) in pixels. Figure 2: Diagram of a minimal Data Exchange file for a single image. ### 3.4 A minimal Data Exchange file for tomography A tomographic data set consists of a series of projections, dark and white field images. The dark and white fields must have the same projection image dimensions and can be collected at any time before, after or during the projection data collection. The angular position of the tomographic rotation axis is used to keep track of when the dark and white images are collected. 2FXi saves projection images, dark and white images in three 3D arrays as shown in Figure 3 and 4 using, by default, the natural HDF5 order of the a multidimensional array (rotation axis, ccd y, ccd x), i.e. with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. If using the default dimension order, the axes attribute (see Table 4) "theta:y:x" can be omitted. The axes attribute is mandatory if the 3D arrays use a different axes order. This could be the case when, for example, the arrays are optimized for sinogram read (axes = "y:theta:x"). As no units are specified the data is assumed to be in "counts" with the axes (x, y) in pixels. ### 3.5 A typical Data Exchange file for tomography A series of tomographic data sets are typically collected changing the instrument status (energy, detector or optics position) or changing the sample status (position, environment etc.). Figure 5, 6 and 7 show the content of 2FXi files changing the sample temperature, the x-ray source energy and detector-sample distance. Figure 3: Diagram of a minimal Data Exchange file for a single tomographic data set including raw projections, dark and white fields. Since the positions of the rotation axis for each projection, dark and white images are not specified is assumed that the raw projections are taken at equally spaced angular intervals between 0 and 180 degree, with white and dark field collected at the same time before or after the projection data collection. ### 3.5.1 Sample Temperature Scan Figure 4: Diagram of a minimal Data Exchange file for a single tomographic data set including raw projections, dark and white fields. In this case the attribute axes indicates the presence of theta vectors containing the positions of the rotation axis for each projection, dark and white images. Figure 5: Diagram of two tomographic data sets taken at two different sample temperatures (100 and 200 K). To store the temperature in $^{\circ} C$ is necessary to add the attribute units = "celsius" to the temperature tag. ### 3.5.2 X-ray Energy Scan **Figure 6:** Diagram of two tomographic data sets taken at two different energy (10 and 20 keV). To store the temperature in keV is necessary to add the attribute units = "keV" to the energy tag. #### The root of the HDF5 file The root of the HDF5 file "exchange:measurement" "exchange:measurement" "1.0.1" "1.0.1" exchange Projection data Projection data Dark image data Dark image data White image data White image data 111 117 Ш 111 111 111 111 Ш Π_{Π} name "Minivirus" Π_{Π} name "Minivirus" 111 emperature 100 temperature 100 111 "APS 2-BM" "APS 2-BM" Ш APS Π_{Π} 1.6022E-15(J) 9Y 1.6022E-15(J) 111 PCO.Edge PCO.Edge 5e-3 (m) 9e-3 (m) Ш 46 Projection raw data 47 Projection raw data Dark image data Dark image data White image data White image data #### 3.5.3 **Detector-sample Distance Scan** Figure 7: Diagram of two tomographic data sets collected with two different detector-sample distances (5 and 9 mm). ### 3.5.4 Series of Tomographic Measurements A series of tomographic measurements, when relevant, can be stored in the same 2FXi file appending _N to the measurement tag. For example in nano tomography experiments the detector field of view is often smaller than the sample. To collect a complete tomographic data set is necessary to raster the sample across the field of view moving its x and y location. Figure 8 shows a 2FXi file from a nano tomography experiment when the sample rasters through the filed of view. The details of how the *exchange* arrays for a raster nano tomography scan are generated will be discussed in more details in Section 4.4. **Figure 8:** Diagram of a 2FXi file with 4 tomographic data sets from a nano tomography experiment. # **Data Exchange Core Reference** ### 4.1 Top level (root) This node represents the top level of the HDF5 file and holds some general information about the file. Table 3: Data Exchange top level entries | Member | Туре | Example | |------------------------|-------------------|-----------------------------------| | implements | string | "exchange:measurement:provenance" | | version | string | "1.0.1" | | exchange_ N | Exchange group | | | ${\tt measurement_}N$ | Measurement group | | | provenance | Provenance group | | implements - A colon separated list that shows which components are present in the file. The only *mandatory* component is *exchange*. A more general Data Exchange file also contains measurement and provenance information, if so these will be declared in implements as "exchange:measurement:provenance" version - Data Exchange format version. *exchange*_N - The data taken from measurements or processing. measurement N – Each measurement made on the sample. provenance - The Provenance class describes all process steps that have been applied to the data. ### 4.2 Exchange Group This class is a general placeholder for the most important information in a Data Exchange file and contains one or more arrays representing the most basic version of the data. ### 4.2.1 3D array data attributes Table 4: data attributes | Member | Туре | Example | |-------------|--------|----------------| | description | string | "transmission" | | units | string | "counts" | | axes | string | "theta:y:x" | Table 5: x, y, theta, theta_dark, theta_white attribute | Member | Туре | Example | |--------|--------|----------------------| | units | string | " μ m", "degree" |
4.3 Measurement This class holds sample and instrument information. Table 6: Data Exchange top level entries | Member | Туре | Example | |------------|------------------|---------| | sample | Sample class | | | instrument | Instrument class | | sample - The sample measured. instrument - The instrument used to collect this data. ### 4.3.1 Sample This class holds basic information about the sample, its geometry, properties, the sample owner (user) and sample proposal information. Table 7: Sample class members | Member | Туре | Example | |------------------|-------------------------------|-----------------------| | name | string | "cells sample 1" | | description | string | "malaria cells" | | preparation_date | string ISO 8601 | "2011 07 15T15 10Z" | | chemical_formula | string abbr. CIF format | "(Cd 2+)3, 2(H2 O)" | | mass | float | 0.25 | | concentration | float | 0.4 | | environment | string | "air" | | temperature | float | 25.4 | | temperature_set | float | 26.0 | | pressure | float | 101325 | | thickness | float | 0.001 | | position | string | "2D" APS robot coord. | | geometry | Geometry group | | | ids | Experiment identifier group | | | experimenter | Experimenter identifier group | | name - Descriptive name of the sample. description - Description of the sample. preparation_date - Date and time the sample was prepared. chemical formula - Sample chemical formula using the CIF format. ``` mass - Mass of the sample. concentration - Mass/volume. environment - Sample environment. temperature - Sample temperature. temperature_set - Sample temperature set point. pressure - Sample pressure. thickness - Sample thickness. position - Sample position in the sample changer/robot. geometry - Sample center of mass position and orientation. ids - Facility experiment identifiers. experimenter - Experimenter identifiers. ``` 4.3.1.1 Geometry This class holds the general position and orientation of a component. Table 8: Geometry class members | Member | Туре | Quantity | |-------------|-------------------|----------| | translation | Translation class | | | orientation | Orientation class | | orientation - The rotation of the object with respect to the coordinate system. translation - The position of the object with respect to the origin. Only one orientation and one translation is permitted in each geometry class. The position of the origin of the object should be explicitly defined for each object. If it is not defined it should be assumed to be the center of the object. **4.3.1.1.1 Translation** This is the description for the general spatial location of a component - it is used by the Geometry class Table 9: Translation class members | Member | Туре | Example | |-----------|----------|-------------| | distances | 3 floats | 0, 0.001, 0 | distances - The x, y and z components of the translation of the origin of the object relative to the origin of the global coordinate system (the place where the X-ray beam meets the sample when the sample is first aligned in the beam). If distances does not have the attribute units set then the units are in meters (see table 45) **4.3.1.1.2 Orientation** This is the description for a general orientation of a component - it is used by the Geometry class. Table 10: Orientation class members | Member | Туре | Quantity | |--------|----------|----------| | value | 6 floats | unitless | value - Dot products between the local and the global unit vectors. The orientation information is stored as direction cosines. The direction cosines will be between the local coordinate directions and the global coordinate directions. The unit vectors in both the local and global coordinates are right-handed and orthonormal. Calling the local unit vectors (x', y', z') and the reference unit vectors (x, y, z) the six numbers will be $[x' \cdot x, x' \cdot y, x' \cdot z, y' \cdot x, y' \cdot y, y' \cdot z]$ where "·" is the scalar dot product (cosine of the angle between the unit vectors). Notice that this corresponds to the first two rows of the rotation matrix that transforms from the global orientation to the local orientation. The third row can be recovered by using the fact that the basis vectors are orthonormal. Table 11: Experiment identifier class | Member | Туре | Example | |----------|--------|---------| | proposal | string | "1234" | | activity | string | "9876" | | safety | string | "9876" | 4.3.1.2 Experiment identifier proposal - Proposal reference number. For the APS this is the General User Proposal number. activity - Proposal scheduler id. For the APS this is the beamline scheduler activity id. safety - Safety reference document. For the APS this is the Experiment Safety Approval Form number. Table 12: Experimenter identifier class | Member | Туре | Example | |------------------|--------|--------------------------------------| | name | string | "John Doe" | | role | string | "Project PI" | | affiliation | string | "University of California, Berkeley" | | address | string | "EPS UC Berkeley CA 94720 4767 USA" | | phone | string | "+1 123 456 0000" | | email | string | "johndoe@berkeley.edu" | | facility_user_id | string | "a123456" | ### 4.3.1.3 Experimenter identifier name - User name. role - User role. affiliation - User affiliation. address - User address. phone - User phone number. email - User e-mail address facility_user_id - User badge number #### 4.3.2 Instrument The instrument group stores all relevant beamline components status at the beginning of the tomographic measurement. Table 13: Instrument group members | Member | Туре | Example | |-----------------------------|----------------------|------------| | name | string | "XSD/2-BM" | | source | Source group | | | $shutter_{_N}$ | Shutter group | | | attenuator $_{ extstyle N}$ | Attenuator group | | | monochromator | Monochromator group | | | interferometer | Interferometer group | | | $detector_{ extsf{-}}N$ | Detector group | | | sample_stack | Sample Stack group | | | acquisition | Acquisition group | | name - Name of the instrument. source - The source used by the instrument. $shutter_N$ - The shutter(s) used by the instrument. $attenuator_N$ - The attenuators that are part of the instrument. monochromator - The monochromator used by the instrument. $\operatorname{detector}_{N}$ - The detectors that compose the instrument. #### **4.3.2.1 Source** Class describing the light source being used. Table 14: Source class members | Member | Туре | Example | |----------------------------|--------|-----------| | name | string | "APS" | | datetime | | | | beamline | string | "2-BM" | | distance | float | -48.5 | | current | float | 0.094 | | energy | float | 4.807e-15 | | pulse_energy | float | 1.602e-15 | | pulse_width | float | 15e-11 | | mode | string | "TOPUP" | | beam_intensity_incident | float | 55.93 | | beam_intensity_transmitted | float | 100.0 | name - Name of the facility. datetime - Date and time source was measured. beamline - Name of the beamline. distance - The source distance (m) from the sample. current - Electron beam current (A). energy - Characteristic photon energy of the source (J). For an APS bending magnet this is 30 keV or 4.807e-15 J. pulse_energy - Sum of the energy of all the photons in the pulse (J). pulse_width - Duration of the pulse (s). source - Beam mode: TOPUP. beam_intensity_incident - Incident beam intensity in (photons per s). beam_intensity_transmitted - Transmitted beam intensity (photons per s). #### **4.3.2.2 Shutter** Class describing the light source being used. Table 15: Source class members | Member | Туре | Example | |----------|--------|-----------------------| | name | string | "Front End Shutter 1" | | distance | float | -48.5 | | status | string | "OPEN" | name - Shutter name. distance - Shutter distance (m) from the sample. status - "OPEN" or "CLOSED" or "NORMAL" **4.3.2.3** Attenuator This class describes a beamline attenuator(s) used during data collection. If more than one attenuators are used they will be named as attenuator_1, attenuator_2 etc. Table 16: Attenuator class members | Member | Туре | Example | |-------------------------|--------|-----------| | distance | float | -35.7 | | thickness | float | 1e-3 | | attenuator_transmission | float | unit-less | | type | string | Al | distance - The Attenuator distance (m) from the sample. Negative distances represent beamline components that are before the sample while positive distances represent components that are after the sample. In this case the filter is located 35.7 m upstream of the sample. thickness - Thickness of attenuator along beam direction. attenuator_transmission - The nominal amount of the beam that gets through (transmitted intensity)/(incident intensity). type - Type or composition of attenuator. **4.3.2.4** Monochromator Define a monochromator used in the instrument. type - Multilayer type. Table 17: Monochromator class members | Member | Туре | Example | |--------------|--------|--------------| | type | string | "Multilayer" | | energy | float | 1.602e-15 | | energy_error | float | 1.602e-17 | | mono_stripe | string | "Ru/C" | energy - Peak of the spectrum that the monochromator selects. Since units is not defined this field is in J and corresponds to 10 keV. energy_error - Standard deviation of the spectrum that the monochromator selects. Since units is not defined this field is in J. mono_stripe - Type of multilayer coating or crystal. 4.3.2.5 Detector This class holds information about the detector used during the experiment. If more than one detector are used they will be all listed as detector_N. In x-ray fluorescence Table 18: X-ray fluorescence detector class members | Member | Туре | Example | |---------------|--------|---------------------| | manufacturer | string | "CooKe Corporation" | | model | string | "pco dimax" | | serial_number | string | "1234XW2" | manufacturer - The detector manufacturer. model - The detector model. serial_number - The detector serial number . ### 4.4 Provenance
The documentation of all transformations, analyses and interpretations of data is called data provenance. Maintaining this history allows for reproducible data. The Data Exchange format tracks provenance using the Provenance class. The index value attached to the process class denotes the execution order of the processes. The Process class uses references to other classes that describe the analysis in detail. The Provenance class describes all process steps that have been applied to the data. Table 19: Provenance class members | Member | Туре | Example | |------------------------|---------------|---------| | $process_{ extsf{-}}N$ | Process class | | $process_N$ - A process applied to the data. #### 4.4.1 Process The process class holds basic information about a process. It is a generic container for recording the status of a process, and maintaining references to detailed process information. Table 20: Process class members | Member | Туре | Example | |-----------|--------|------------------------| | status | string | "SUCCESS" | | reference | string | "/reconstruction" | | message | string | "Full reconstruction." | status - Current process status. May be one of the following: QUEUED, RUNNING, FAILED, or SUCCESS. reference - Path to a process description group. The process description group contains all metadata to perform or run the specific process. message - A process specific message generated by the process. It may be a confirmation that the process was successful, or a detailed error message, for example. Table 21: Process class examples | process_1 | | | |-----------|-----------|--| | | status | "SUCCESS" | | | reference | "/sinogram" | | | message | "modify axes from "theta:y:x" to "y:theta:x" | | process_2 | | | | | status | "SUCCESS" | | | reference | "/ring_removal" | | | message | "RIng removal algorithm." | | process_3 | | | | | status | "SUCCESS" | | | reference | "/reconstruction" | | | message | "Full reconstruction." | | process_4 | | | | | status | "RUNNING" | | | reference | "/gridftp" | | | message | "cluster to remote user data transfer" | | process_5 | | | | | status | "RUNNING" | | | reference | "/export" | | | message | "reconstructed data conversion" | ### 4.4.2 Process description The process description group defined in the reference tag in each process steps contains all parameters, including input and output datasets to execute a specific process steps and it should be placed at the root of the HDF5 file. #### 5 **Code Examples** All the code examples as well as the resulting Data Exchange files are available from http://www.aps.anl.gov/DataExchange/. ### 5.1 Creating a minimal Data Exchange file Include code here The resulting file should be equivalent to the one in Fig. 2. # 6 Data Exchange for X-ray Tomography In -ray tomography the 3D arrays representing the most basic version of the data include projections, dark and white fields. It is *mandatory* that there is at least one data class in each exchange class. Most data analysis and plotting programs will primarily focus in this class. Table 22: exchange class members for tomography data | Member | Туре | Example | |--------------------------|---------------------------------|-----------------------| | title | string | "raw absorption tomo" | | data | 3D array | see 4 for attributes | | Χ | vector of dims 2 | see 5 for attributes) | | У | vector of dims 1 | see 5 for attributes) | | theta | vector of dims 0 of data | see 5 for attributes) | | data_dark | 3D array | see 4 for attributes | | theta_dark | vector for dims 0 of data_dark | see 5 for attributes) | | data ₋ white | 3D array | see 4 for attributes | | theta ₋ white | vector for dims 0 of data_white | see 5 for attributes) | title - This is the data title. data - A tomographic data set consists of projection, dark and white images. Data is a three-dimensional array containing the raw projection images. All multidimensional arrays are stored by default using the default HDF5 axes order, i.e. with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. 2FXi follows this convention saving the projection data as a 3D array with dimension order: rotation, ccd y, ccd x. If using the default dimension order, the axes attribute "theta:y:x" (see Table 4) can be omitted. The axes attribute is mandatory if the 3D arrays use a different axes order. This could be the case when, for example, the arrays are optimized for sinogram read (axes = "y:theta:x"). As no units are specified the data is assumed to be in "counts" with the axes (x, y) in pixels. Data attributes, if used, are defined in Table 4, if data does not have any attributes defined then the unit is assumed to be in "counts", the axes (x, y) are in pixels. data_dark, data_white - The dark field and white fields must have the same dimensions of the projection images and can be collected at any time before, after or during the projection data collection. Data_dark and data_white attributes, if used, are defined in Table 4, if data_dark and data_white don't have any attributes defined then the correspond- ing data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection. x, y - X and y are vectors storing the dimension scale for the second and third data array dimension. If x, y are not defined the second and third dimensions of the data array are assumed to be in pixels. theta, theta_dark, theta_white - Theta is a vector storing the projection angular positions with attributes defined in Table 5. If theta is not defined the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree. The dark field and white fields can be collected at any time before, after or during the projection data. Theta_dark, and theta_white, with attributes defined in Table 5, store the position of the tomographic rotation axis when the corresponding dark and white images are collected. If theta_dark and theta_white are missing the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection. # Instrument specific for x-ray tomography #### 6.1.1 **Detector** This class holds information about the detector used during the experiment. If more than one detector are used they will be all listed as detector_N. In full field imaging the detector consists of a CCD camera, microscope objective and a scintillator screen. Raw data recorded by a detector as well as its position and geometry should be stored in this class. manufacturer - The detector manufacturer. model - The detector model. serial_number - The detector serial number . bit_depth - The detector bit depth. x_pixel_size, y_pixel_size - Physical detector pixel size (m). x_dimension, y_dimension - The detector horiz./vertical dimension. x_binning, y_binning - If the data are collected binning the detector x_binning and y_binning store the binning factor. operating_temperature - The detector operating temperature (K). Table 23: X-ray tomography detector class members | Member | Туре | Example | |-------------------------|---------------------------------|-----------------------------------| | manufacturer | string | "CooKe Corporation" | | model | string | "pco dimax" | | serial_number | string | "1234XW2" | | bit_depth | integer | 12 | | x_pixel_size | float | 6.7e-6 | | y_pixel_size | float | 6.7e-6 | | x_dimension | integer | 2048 | | y_dimension | integer | 2048 | | x_binning | integer | 1 | | y_binning | integer | 1 | | operating_temperature | float | 270 | | exposure_time | float | 1.7e-3 | | frame_rate | integer | 2 | | distance | float | 5.7e-3 | | data | 3D array | variable (see Tab. 4 for attrib.) | | X | vector of dims 2 | variable (see Tab. 5 for attrib.) | | У | vector of dims 1 | variable (see Tab. 5 for attrib.) | | theta | vector of dims 0 of data | variable (see Tab. 5 for attrib.) | | data_dark | 3D array | variable (see Tab. 4 for attrib.) | | theta_dark | vector for dims 0 of data_dark | variable (see Tab. 5 for attrib.) | | data ₋ white | 3D array | variable (see Tab. 4 for attrib.) | | theta_white | vector for dims 0 of data_white | variable (see Tab. 5 for attrib.) | | roi | roi class | | | objective_ N | objective class | | | scintillator | scintillator class | | | counts_per_joule | float | unitless | | basis_vectors | float array | length | | corner_position | 3 floats | length | exposure_time - The detector exposure time (s). frame_rate - The detector frame rate (fps). This parameter is set for fly scan distance - The detector distance from the sample. data - A tomographic data set consists of projection, dark and white images. Data is a three-dimensional array containing the raw projection images. As defined in the HDF5 standard, all multidimensional arrays must be stored with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. 2FXi follows this convention saving the projection data as a 3D array with dimension order: rotation, ccd y, ccd x. Data attributes, if used, are defined in Table 4, if *data* does not have any attributes defined then the unit is assumed to be in "counts", the axes (x, y) are in pixels and the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree. data_dark, data_white - The dark field and white fields must have the same dimensions of the projection images and can be collected at any time before, after or during the projection data collection. Data_dark and data_white attributes, if used, are defined in Table 4, if data_dark and data_white don't have any attributes defined then the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection. x, y - X and y are vectors storing the
dimension scale for the second and third data array dimension. If x, y are not defined the second and third dimensions of the data array are assumed to be in pixels. theta_theta_dark, theta_white - Theta is a vector storing the projection angular positions with attributes defined in Table 5. If theta is not defined the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree. The dark field and white fields can be collected at any time before, after or during the projection data. Theta_dark, and theta_white, with attributes defined in Table 5, store the position of the tomographic rotation axis when the corresponding dark and white images are collected. If theta_dark and theta_white are missing the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection. roi - The detector selected Region Of Interest (ROI). objective_N - List of the visible light objectives mounted between the detector and the scintillator screen. counts_per_joule - Number of counts recorded per each joule of energy received by the detector. The number of incident photons can then be calculated by: $$number\ of\ photons = \frac{source\ energy \times data\ counts}{counts\ per\ joule}$$ basis_vectors - A matrix with the basis vectors of the detector data. For more details see ??. corner_position - The x, y and z coordinates of the corner of the first data element. For more details see ??. geometry_1 - Position and orientation of the center of mass of the detector. This should only be specified for non pixel detectors. For pixel detectors use basis_vectors and corner_position. # 6.1.2 ROI Class describing the region of interest (ROI) of the image actually collected, if smaller than the full CCD. Table 24: roi class members | Member | Туре | Example | |--------|---------|---------| | name | string | "APS" | | xl | integer | 256 | | y1 | integer | 256 | | x2 | integer | 1792 | | y2 | integer | 1792 | - x1 Left pixel position. - y1 Top pixel position. - x2 Right pixel position. - y2 Bottom pixel position. # 6.1.3 Objective Class describing the microscope objective lenses used. Table 25: objective class members | Member | Туре | Example | |---------------|--------|------------| | manufacturer | string | "Zeiss" | | model | string | "Axioplan" | | magnification | float | 5 | | na | float | 0.8 | manufacturer - Lens manufacturer. model - Lens model. magnification - Lens specified magnification. na - The numerical aperture (N.A.) is a measure of the light-gathering characteristics of the lens. # 6.1.4 Scintillator Class describing the visible light scintillator coupled to the CCD camera objective lens. Table 26: scintillator class members | Member | Туре | Example | |-------------------------|--------|----------------| | manufacturer | string | "Crytur" | | serial_number | string | "12" | | name | string | "Yag polished" | | type | string | "Yag on Yag" | | scintillating_thickness | float | 5e-6 | | substrate_thickness | float | 1e-4 | manufacturer - Scintillator Manufacturer. serial_number - Scintillator serial number. name - Scintillator name. scintillating thickness - Scintillator thickness. substrate_thickness - Scintillator substrate thickness. #### 6.1.5 **Setup** Class storing the positions of the stack of stages located under the sample before the tomographic data collection start. The stack defined in Table 27 is used at the APS and the SLS and consists of an x-y-z stack and a pitch-roll (rotation_x and rotation_y) located under the rotary stage, plus and x-z (xx and zz) located above the rotary stage. Table 27: Sample stack class members | Member | Туре | Example | |---------------|-------|---------| | x_coordinate | float | 6.6E-3 | | y_coordinate | float | 4.3E-3 | | z_coordinate | float | 5.5E-3 | | xx_coordinate | float | -8.1E-3 | | zz_coordinate | float | 1.6E-3 | | rotation_x | float | 0.00 | | rotation_z | float | 0.00 | x_coordinate, y_coordinate, z_coordinate - Position of the x-y-z stages located under the rotary stage at the beginning of the scan. xx_coordinate, zz_coordinate - Position of the x and z stages located above the rotary stage. rotation_x, rotation_z - Position of pitch and roll stages located under the rotary stage # 6.1.6 Rotation Setup This class stores the rotary stage parameters. Table 28: Rotation Setup class members | Member | Туре | Example | |---------------|-------|---------| | start_angle | float | 0.000 | | end_angle | float | 180.000 | | angular_step | float | 0.125 | | angular_speed | float | 0.2 | start_angle - Rotary stage position at the beginning of the scan. end_angle - Rotary stage position at the end of the scan. angular_step - Rotary stage step size (used if data are collected in a stop-go mode. angular_speed - Rotary stage speed. ### 6.1.7 Acquisition A tomographic data set consists of a series of projections, dark and white field images. The dark field and white fields can be collected at any time before, after or during the projection data collection. The acquisition class stores scan parameter values associated with the tomographic data collection. Table 29: acquisition class members | Member | Туре | Example | |-----------------------|----------------------|---------------------| | type | string | "stop and go" | | start_date | string ISO 8601 | "2011 07 15T15 10Z" | | end_date | string ISO 8601 | "2011 07 15T25 10Z" | | number_of_projections | integer | 1441 | | dark_setup | Dark Setup Class | | | white_setup | White Setup Class | | | rotation_setup | Rotation Setup Class | | type - Tomographic data collection type: stop and go, fly scan etc. start_date - Tomographic data collection start. end_date - Tomographic data collection end. number_of_projections - Number of tomographic projections. dark_setup - Dark field data collection setup. white_setup - White field data collection setup. rotation_setup - Rotation stage setup. #### 6.1.8 Dark Setup This class stores the parameters used to collect the dark field images Table 30: Dark Setup class members | Member | Туре | Example | | |-------------|------|---------|--| | frequency | int | 0 | | | period | int | 0 | | | number_pre | int | 1 | | | number_post | int | 1 | | frequency - The frequency of dark image collection during rotation. Specified as the number of regular projections to take prior to taking a number of dark images given by period. For example, a value of 10 means to take 10 projections, and then one or more dark images. period - The number of dark images to collect during rotation at intervals specified by frequency. number_pre - Number of dark images collected pre-rotation. number_post - Number of dark images collected post-rotation. #### 6.1.9 White Setup This class stores the parameters used to collect the white field images. Member Type Example int 0 frequency period int 0 number_pre int 1 number_post int 1 "X" in_out_axis string in float 0 out float 3e-3 Table 31: White Setup class members frequency - The frequency of dark image collection during rotation. Specified as the number of regular projections to take prior to taking a number of dark images given by period. For example, a value of 10 means to take 10 projections, and then one or more dark images. period - The number of dark images to collect during rotation at intervals specified by frequency. number_pre - Number of dark images collected pre-rotation. number_post - Number of dark images collected post-rotation. in_out_axis - Indicates which axis is used to move the sample out of the field of view. in - Position of the in_out_axis when the sample is in the data collection position. ${\color{blue} \text{out}}$ - Position of the in_out_axis when the sample is outside of the field of view. #### 6.1.10 Interferometer This class stores the interferometer parameters. Table 32: Interferometer class members | Member | Туре | Example | |------------------------|---------|---------| | start_angle | float | 0.000 | | grid_start | float | 0.000 | | grid_end | float | 2.4e-6 | | grid_position_for_scan | float | 1.3e-6 | | number_of_grid_steps | integer | 8 | start_angle - Interferometer start angle. grid_start - Interferometer grid start angle. grid_end - Interferometer grid end angle. grid_position_for_scan - Interferometer grid position for scan. number_of_grid_steps - Number of grid steps. # 6.2 APS 2-BM Process descriptions For the APS 2-BM tomography system we define the following process descriptions: # 6.2.1 Sinogram The sinogram class contains all information and parameters required to generate sinograms from projection data. Table 33: sinogram class members | Member | Туре | Example | |------------------|--------|---------------| | name | string | | | version | string | 1.0 | | input_data | string | "/exchange_1" | | input_data_axes | string | "theta:y:x" | | output₋data | string | "/exchange_2" | | output_data_axes | string | "y:theta:x" | name - Algorithm name. version - Algorithm version. input_data - Path to the input data. input_data_axes - Input 3D array axes order. output_data - Path to the output data. output_data_axes - Output 3D array axes order. # 6.2.2 Ring Removal The ring removal class contains information required to run a ring_removal processing step. Table 34: Ring removal class members | Member | Туре | Example | |-------------|--------|---------------| | name | string | | | version | string | 1.0 | | input_data | string | "/exchange_2" | | output_data | string | "/exchange_2" | | coefficient | float | 1.0 | name - Algorithm name. version - Algorithm version. input_data - Path to the input data. $output_data$ - Path to the output data. coefficient - #### 6.2.3 Reconstruction The Reconstruction class contains all information and parameters required to run a tomography reconstruction using the APS cluster. Table 35: Reconstruction class members. | Member | Туре | Example | |----------------------------|-----------------
---------------| | input₋data | string | "/exchange_2" | | output_data | string | "/exchange_3" | | reconstruction_time | float | 37.5 | | reconstruction_slice_start | int | 1000 | | reconstruction_slice_end | int | 1030 | | rotation_center | float | 1048.50 | | algorithm | Algorithm class | | input_data - Path to the input data. output_data - Path to the output data. This parameter if supported by the reconstruction code will be used to save the reconstructed data in the HDF5 file. reconstruction_time - Total time (s) to reconstruct the full data set. reconstruction_slice_start - First reconstruction slice. reconstruction_slice_end - Last reconstruction slice. rotation_center - Center of rotation in pixels. algorithm - Algorithm class describing reconstruction algorithm parameters. ### 6.2.4 Algorithm The Algorithm class contains information required to run a tomography reconstruction using the APS cluster. Table 36: Algorithm class members | Member | Turno | Evennele | |--|---------|-----------------| | wember | Туре | Example | | name | string | SART | | version | string | 1.0 | | implementation | string | GPU | | number_of_nodes | integer | 16 | | type | string | Iterative | | iterative_stop_condition | string | iteration_max | | iterative_iteration_max | integer | 200 | | iterative_projection_threshold | float | | | iterative_difference_threshold_percent | float | | | iterative_difference_threshold_value | float | | | iterative_regularization_type | string | total_variation | | iterative_regularization_parameter | float | | | iterative_step_size | float | 0.3 | | iterative_sampling_step_size | float | 0.2 | | analytic_filter | string | "Parzen" | | analytic_padding | float | 0.50 | | analytic_processed_periods | float | 1 | | analytic_processed_number_of_steps | integer | 7 | name - Reconstruction method name: SART, EM, FBP, GridRec. version - Algorithm version. implementation - CPU or GPU. number_of_nodes - Number of nodes used. This parameter is set when the reconstruction is parallelized and run on a cluster. type - Tomography reconstruction method: analytic or iterative. iterative_stop_condition - iteration_max, projection_threshold, difference_threshold_percent, difference_threshold_value. iterative_iteration_max - Maximum number of iterations. iterative_projection_threshold - The threshold of projection difference to stop the iterations as p in $|y - Ax_n| < p$. iterative_difference_threshold_percent - The threshold of reconstruction difference to stop the iterations as p in $|x_{n+1}|/|x_n| < p$. iterative_difference_threshold_value - The threshold of reconstruction difference to stop the iterations as p in $|x_{n+1}| - |x_n| < p$. iterative_regularization_type - total_variation, none. iterative_regularization_parameter - lambda/alpha value in $(y-A_x)^2$ + $\alpha * L_1(x)$. iterative_step_size - Step size between iterations in iterative methods as δ_t in $x_{n+1} = x_n + \delta_t * f(x_n)$. iterative_sampling_step_size - Step size used for forward projection calculation in iterative methods. analytic_filter - Filter type. analytic_padding - analytic_processed_periods - number of processed periods of the collected phase stepping curve (differential phase contrast - grating). analytic_processed_number_of_steps - total number of processed phase steps (differential phase contrast - grating). # 6.2.5 Gridftp The gridftp class contains all information and parameters required to transfer data using the APS gridftp server. **Table 37:** gridftp class members | Member | Туре | Example | |-------------|--------|---------------------------------| | name | string | | | version | string | 1.0 | | input₋data | string | "/source file location" | | output_data | string | "/remote user cluster location" | | credentials | string | "anonymous" | name - Algorithm name. version - Algorithm version. input_data - Path to the input data. output_data - Path to the output data. credentials - Account/credentials used for the data transfer. #### 6.2.6 Export The export class contains all information and parameters required to extract and export data from a Data Exchange file. Table 38: export class members | Member | Туре | Example | |-------------------------|--------|------------------| | name | string | | | version | string | 1.0 | | input_data | string | "/exchange_3" | | output_data | string | "/user_folder" | | output_data_format | string | "TIFF" | | output_data_scaling_max | float | 0.005 | | output_data_scaling_min | float | -0.00088 | | output_data_prefix | string | "cells sample 1" | name - Algorithm name. version - Algorithm version. input_data - Path to the input data. output_data - Path to the output data. output_data_format - output_data_scaling_max - output_data_scaling_min - output_data_prefix - # 6.3 Creating a minimal Data Exchange file for tomography Include code here The resulting file should be equivalent to the one in Fig. 4. # 6.4 Creating a typical Data Exchange file for tomography Include code here The resulting file should be equivalent to the one in Fig. 5. #### **Data Exchange for X-ray Photon Correlation** 7 In x-ray photon correlation the arrays representing the most basic version of the data include Table 39: exchange class members for x-ray photon correlation | Member | Туре | Example | |--------|--------|-------------------------------| | title | string | "raw photon correlation data" | | data | array | see ?? for attributes | title - This is the data title. data - An x-ray photon correlation data set consists of # Instrument specific for x-ray photon correlation #### 7.1.1 Detector This class holds information about the detector used during the experiment. If more than one detector are used they will be all listed as $detector_N$. manufacturer - The detector manufacturer. model - The detector model. serial_number - The detector serial number . bit_depth - The detector bit depth. x_pixel_size, y_pixel_size - Physical detector pixel size (m). x_dimension, y_dimension - The detector horiz./vertical dimension. x_binning, y_binning - If the data are collected binning the detector x_binning and y_binning store the binning factor. operating_temperature - The detector operating temperature (K). exposure_time - The detector exposure time (s). exposure_period - Time from the beginning of an exposure to the beginning of the next exposure (s). frame_rate - The detector frame rate (fps). This parameter is set for fly scan Table 40: X-ray photon correlation detector class members | Member | Туре | Example | |-----------------------|----------------------|-----------------------------------| | manufacturer | string | "CooKe Corporation" | | model | string | "pco dimax" | | serial_number | string | "1234XW2" | | bit_depth | integer | 12 | | x_pixel_size | float | 6.7e-6 | | y_pixel_size | float | 6.7e-6 | | x_dimension | integer | 2048 | | y_dimension | integer | 2048 | | x_binning | integer | 1 | | y_binning | integer | 1 | | operating_temperature | float | 270 | | exposure_time | float | 1.7e-3 | | exposure_period | float | 10.0 | | frame_rate | integer | 2 | | distance | float | 5.7e-3 | | data_flat | 3D array | variable (see Tab. 4 for attrib.) | | roi | roi class | | | efficiency | float | 99.95 | | adu_per_photon | float | 5.0 | | gain | float | 1.0 | | basis_vectors | float array | length | | corner_position | 3 floats | length | | blemish_mask | 2D array of integers | variable (see Tab. 4 for attrib.) | | kinetics | kinetics class | | | geometry | string | "TRANSMISSION" | distance - The detector distance from the sample. data flat - The dark field and white fields must have the same dimensions as the collected images. Data_flat attributes, if used, are defined in Table 4. roi - The detector selected Region Of Interest (ROI). efficiency - The efficiency of the detector. adu_per_photon - The ADU per photon. gain - Detector gain setting. basis_vectors - A matrix with the basis vectors of the detector data. For more details see ??. corner_position - The x, y and z coordinates of the corner of the first data element. For more details see ??. blemish_mask - Blemish mask labeling dead pixels in the detector. It's a 2D array of the same dimensions as the full detector, with 0 labeling bad pixels and 1 labeling good pixels. kinetics - Kinetics detector properties. geometry - TRANSMISSION or REFLECTION. ### 7.1.2 Kinetics Class describing the kinetics camera mode properties. This applies only to kinetics mode cameras. Table 41: kinetics class members | Member | Туре | Example | |---------------------|---------|---------| | name | string | "APS" | | window_size | integer | 256 | | top | integer | 1024 | | first_usable_window | integer | 1 | | last_usable_window | integer | 4 | window_size - Number of rows in each kinetics window. top - Top pixel. first_usable_window - The first usable kinetics window. last_usable_window - The last usable kinetics window. ### 7.1.3 **Setup** This class stores XPCS setup parameters. Table 42: XPCS Setup class members | Member | Туре | Example | |---------------|-------|---------| | beam_center_x | float | 0.000 | | beam_center_y | float | 180.000 | | beam_size_h | float | 10.000 | | beam_size_v | float | 18.000 | | stage_zero_x | float | 199.0 | | stage_zero_z | float | 185.0 | | stage_x | float | 199.0 | | stage_z | float | 185.0 | | xspec | float | 0.0 | | yspec | float | 0.0 | | ccdxspec | float | 0.0 | | ccdyspec | float | 0.0 | | X | float | 50 | | У | float | 50 | | angle | float | 50.0 | ``` beam_center_x - Pixel location of beam center. beam_center_y - Pixel location of beam center. beam_center_h - Horizontal beam size on detector. beam_center_v - Vertical beam size on detector. stage_zero_x - Initial stage location. stage_zero_y - Initial stage location. stage_x - Stage location. stage_y - Stage location. xspec - ... yspec - ... ccdxspec - ... ccdyspec - ... x - ... y - ... ``` angle - ... # 7.2 APS
Sector 8 Process descriptions For the APS Sector 8 x-ray photon correlation system we define the following process descriptions: # 7.2.1 XPCS The XPCS class contains all information and parameters required to run a using the APS cluster. Table 43: XPCS class members. | Member | Туре | Example | |----------------------|----------------------|-----------------------------------| | input_file_local | string | "InputFile.imm" | | output_file_local | string | "OutputFile.imm" | | input_file_remote | string | "InputFile.imm" | | output_file_remote | string | "OutputFile.imm" | | specfile | string | "Specfile.spec" | | specscan_dark_number | integer | | | specscan_data_number | integer | | | compression | string | "SPARSE" | | file_mode | string | "MULTI" | | delays_per_level | integer | | | lld | float | | | sigma | float | | | analysis_type | string | "DYNAMIC" | | batches | integer | "2" | | data₋begin | integer | "]" | | data_end | integer | "99998" | | dark_begin | integer | "99999" | | dark_end | integer | "100000" | | data_begin_todo | integer | "]" | | data_end_todo | integer | "99998" | | dark_begin_todo | integer | "99999" | | dark_end_todo | integer | "100000" | | mask | 2D array of integers | variable (see Tab. 4 for attrib.) | | dqmap | 2D array of floats | variable (see Tab. 4 for attrib.) | | sqmap | 2D array of floats | variable (see Tab. 4 for attrib.) | | dphimap | 2D array of floats | variable (see Tab. 4 for attrib.) | | sphimap | 2D array of floats | variable (see Tab. 4 for attrib.) | | dqspan | 1D array of floats | variable (see Tab. 4 for attrib.) | | dphispan | 1D array of floats | variable (see Tab. 4 for attrib.) | | sqspan | 1D array of floats | variable (see Tab. 4 for attrib.) | | sphispan | 1D array of floats | variable (see Tab. 4 for attrib.) | | sqlist | 1D array of floats | variable (see Tab. 4 for attrib.) | | dqlist | 1D array of floats | variable (see Tab. 4 for attrib.) | | sphilist | 1D array of floats | variable (see Tab. 4 for attrib.) | | dphilist | 1D array of floats | variable (see Tab. 4 for attrib.) | | normalization_method | string | "INCIDENT" | | blemish_enabled | string | "TRUE" | | flatfield_enabled | string | "TRUE" | ``` input_file_locatl - Path to the input data file. output_file_local - Full path for output data file. input_file_local - Path to the input data file. output_file_local - Full path for output data file. specfile - Full path to spec file. specscan_dark_number - ... specscan_data_number - ... compression - Compression type: either SPARSE or NONSPARSE. file_mode - MULTI or SINGLE. delays_per_level - Delays per level. lld - LLD. sigma - Sigma. analysis_type - STATIC or DYNAMIC batches - Number of batches. data_begin - Index of first data frame in .imm file. data_end - Index of last data frame in .imm file. dark_begin - Index of first dark data frame in .imm file. dark_end - Index of last dark data frame in .imm file. data_begin_todo - Index of first data frame in .imm file to analyze. data_end_todo - Index of last data frame in .imm file to analyze. dark_begin_todo - Index of first dark data frame in .imm file to analyze. dark_end_todo - Index of last dark data frame in .imm file to analyze. mask - Mask used to exclude image regions during analysis. It's a 2D array of the same dimensions as the collected data, with 0 labeling excluded pixels and 1 labeling included pixels. dqmap - dqmap. 2D array of the same dimensions as the collected data. ``` ``` sqmap - sqmap. 2D array of the same dimensions as the collected data. dphimap - dphimap. 2D array of the same dimensions as the collected data. sphimap - sphimap. 2D array of the same dimensions as the collected data. dqspan - dqspan. 1D array. dphispan - dphispan. 1D array. sqspan - sqspan. 1D array. sphispan - sphispan. 1D array. sqlist - sqlist. 1D array. dqlist - dqlist. 1D array. sphilist - sphilist. 1D array. dphilist - dphilist. 1D array. normalization_method - Normalization method: INCIDENT or TRANS- MITTED or BOTH or NONE. blemish_enabled - Use detector blemish data. flatfield_enabled - Use detector flat field data. ``` # Data Exchange for X-ray Fluorescence In x-ray fluorescence the arrays representing the most basic version of the data include Table 44: exchange class members for x-ray fluorescence | Member | Туре | Example | |--------|--------|-------------------------| | title | string | "raw fluorescence data" | | data | array | see ?? for attributes | title - This is the data title. data - An x-ray fluorescence data set consists of #### Instrument specific for x-ray fluorescence 8.1 # **Appendix** # **Default units for Data Exchange entries** The default units for Data Exchange entries follow the CXI entries definition, i.e. are SI based units (see table 45) unless the "units" attribute is specified. Data Exchange prefers not to use "units" and use the default SI based units whenever possible. Table 45: SI (and common derived) base units for different quantities | Quantity | Units | Abbreviation | |---------------------|--------------|--------------| | length | meter | m | | mass | kilogram | kg | | time | second | S | | electric current | ampere | Α | | temperature | kelvin | K | | amount of substance | mole | mol | | luminous intensity | candela | cd | | frequency | hertz | Hz | | force | newton | Ν | | pressure | pascal | Pa | | energy | joule | J | | power | watt | W | | electric potential | volt | V | | capacitance | farad | F | | electric resistance | ohm | Ω | | absorbed dose | gray | Gy | | area | square meter | m^2 | | volume | cubic meter | m^3 | ### A.1.1 Angles Angles are always defined in degrees *not* in radians. ### A.1.2 Dates Dates are always specified according to the ISO 8601. This means for example "1996-07-31T21:15:22+0600". Note the "T" separating the data from the time and the "+0600" timezone specification. # A.2 Geometry #### A.2.1 Coordinate System The Data Exchange uses the same CXI coordinate system. This is a right handed system with the z axis parallel to the X-ray beam, with the positive z direction pointing away from the light source, in the downstream direction. The y axis is vertical with the positive direction pointing up, while the x axis is horizontal completing the right handed system (see Fig. 9). The origin of the coordinate system is defined by the point where the X-ray beam meets the sample. **Figure 9:** The coordinate system used by CXI. The intersection of the X-ray beam with the sample define the origin of the system. The z axis is parallel to the beam and points downstream. #### A.2.2 The local coordinate system of objects For many detectors their location and orientation is crucial to interpret results. Translations and rotations are used to define the absolute position of each object. But to be able to apply these transformations we need to know what is the origin of the local coordinate system of each object. Unless otherwise specified the origin should be assumed to be the geometrical center of the object in question. The default orientation of the object should have the longest axis of the object aligned with the x axis, the second longest with the y axis and the shortest with the z axis.